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Abstract. We investigate by extensive Monte Carlo simulations the discrete Gaussian model
for a crystalline surface on a disordered substrate. The average height–height correlation
C(L) = 〈(h(Ex) − h(Ex + EL))2〉 scales asA(T ) ln L at all temperatures. A transition is observed
in the temperature dependence of the coefficientA(T ): while A(T ) ∼ T for T > Tc it becomes
almost temperature independent belowTc. This behaviour is consistent with the predictions of
a replica-symmetry broken solution of the Gaussian variational calculations. We also explore
the probability distributionP(q) of a quasi-overlapq. It exhibits a transition atTc with its
maxima shifting away fromq = 0. The size-dependence of the ratio of the fourth to second
moment yields a first estimate for the correlation-length exponentν ≈ 1.23, and for the dynamic
exponent atTc: z ≈ 2.3.

1. Introduction

Surface roughening has been studied extensively both theoretically and experimentally.
The basic mechanism is well understood [1, 2]: at low temperature the crystalline surface
is essentially flat. At temperatureT > TR, whereTR is the temperature of the roughening
transition, the surface is rough. This is reflected in the height–height correlation function
C(L) = 〈(h(Ex + L) − h(Ex))2〉. Below TR, C(L) approaches a constant at long distances
L while aboveTR its asymptotic behaviour isC(L) ∼ T ln L. This behaviour may be
understood from the competition between energy and entropy: at very low temperature the
energy is minimized when the surface is parallel to the substrate. AtT > TR the entropy
dominates, the step free-energy vanishes and the periodic potential is irrelevant.

A natural question then arises [3]: what will be the effects of disorder in the substrate
at low temperature? The behaviour forT < TR depends on the rigidity of the crystal. If
the rigidity is finite the crystal will be affected by the substrate disorder only close to the
substrate. There will be some ‘healing’ distance beyond which the periodic crystal will not
be sensitive to the disorder in the substrate. If the height exceeds this distance the behaviour
of the surface will be the same as if the substrate were flat.

Here we study the behaviour of the substrate when the height is much smaller than the
‘healing’ distance, which we assume to be infinite (as it is in the case of an infinite rigidity).
We find a new behaviour in which the surface remains rough at low temperature but the
roughness is due to the disorder (rather than the temperature) and has glassy properties. (If
the height is of the order of the ‘healing’ distance, a crossover between the two behaviours
will occur as the surface height grows. This crossover will be addressed elsewhere.) A
brief summary of the important results concerning the equilibrium properties was given in
our earlier publication [4].
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The organization of the paper is as follows. In the next section the discrete Gaussian
model with the disorder is described and the results of previous studies of the related random-
phase sine–Gordon model (RSGM) are reviewed. In section 3 the numerical simulations are
presented and discussed. The last section 4 is devoted to the conclusions.

2. The random discrete Gaussian model

Let us denote the height of the surface above a pointi on the2D basal lattice byhi . The
so-called discrete Gaussian model which was very successful in describing the surface of a
crystal on a flat substrate [1, 2] is given by the Hamiltonian

H = κ

2

∑
〈i,j〉

(hi − hj )
2 (2.1)

whereκ is the surface tension, and the sum runs over nearest-neighbour pairs. If the substrate
is flat the variableshi are always equal tonib whereb is the vertical lattice spacing and
ni is an integer. If the substrate is disordered we have to add (or subtract) the height of
the substrate itselfDi (with respect to some reference heighth = 0). The deviations in the
substrate affect the surface only to the extent to which they deviate from an integer multiple
of b. Therefore, the relevant quantity isdi ≡ Di(modb). Without loss of generality we can
therefore assume that the local deviations aredi and that they are restricted to the interval
(−b/2, +b/2]. If the substrate is totally randomdi will be uniformly distributed in this
interval. We also assume thatdi on different sites are uncorrelated keeping in mind that
the conclusions will also apply in the presence of short-range correlations in the substrate
height. The height variablehi then takes the valueshi = di + nib whereni is any, positive
or negative, integer (see figure 1).

The partition function for a given realization of the disorder consists in summing
exp{−βH} over all possible integersni . Using the Poisson summation formula:

∞∑
ni=−∞

δ(hi − di − nib) = 1

b

∞∑
mi=−∞

e2π i(hi−di )mi/b (2.2)

Figure 1. Schematic illustration of the simulated model. The heightshi are measured with
respect to the flat reference surface denoted by broken lines. The shaded area on the bottom
indicates the disorder substrate.
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and introducing continuous fieldsφi , the partition function may be expressed as

Z =
(∏

i

∫ +∞

−∞
dφi

) +∞∑
mi=−∞

exp

{
−κβ

2

∑
〈i,j〉

(φi − φj )
2 +

∑
i

2π i (φi − di) mi/b

}
. (2.3)

To reach the continuum limitφi are replaced byφ(Ex), and finite differences are replaced
by the derivatives. Near the critical point only the first harmonic inφ is relevant [1]. The
RSGM Hamiltonian is obtained by neglecting the higher harmonics:

Z =
∫

dEx
∫ +∞

−∞
dφ(Ex) exp

{
−

∫
dEx

[
κβ

2

[∇φ(Ex)
]2 − λ cos

(
2π

[
φ(Ex) − d(Ex)

]
/b

)]}
(2.4)

whereλ ∼ 1. The horizontal lattice spacing was chosen asa = 1.
The most important quantity to explore is the averaged height–height correlation

function:

C(r) ≡
[〈

(h(r + r0) − h(r0))
2
〉
T

]
av

. (2.5)

Here and throughout this paper〈· · ·〉T denotes a thermal average (in theMC procedure it
corresponds to an averaging over ‘time’ orMC steps). [· · ·]av denotes an average over
disorder; in theMC procedure it is performed by averaging over different realizations of the
di (sometimes it will also be denoted as an average over ‘samples’). Finally, for a given
realization of the disorder and a given configuration of the surface we also need to average
over all originsr0 and all directions, all of these are denoted by the overbar.

It turns out that the sameRSGM Hamiltonian also describes vortex arrays in two
dimensions in the presence of weak point-like disorder. These are obtained when a magnetic
field is applied parallel to a2D film. This model was actually the first one for which the
the existence of the vortex–glass transition was argued [5]. The variableφ(Ex) is related
to the deviations of the flux lines from an ordered array of parallel straight lines with a
distanceb between them. Many of the recent theoretical studies of theRSGM were made in
the flux-array context but clearly all conclusions apply equally to both systems. We should
also mention that the sameRSGM also describes a vortex-freeXY model with a random
field and some studies were made in this context.

The main analytical approaches, the renormalization-group [6] (RG) and the Gaussian
variational [7, 8] (GV) method both predict a transition at the same critical temperature
Tc = κ/π . The two methods also agree on the properties of the high temperature phase in
which the discrete nature of the particle is irrelevant and the behaviour is that of the simple
Gaussian model (without the cosine term in the Hamiltonian of (2.4)). ForT > Tc the
correlation function is thus given by

C0(r) = T

κπ
ln |r| . (2.6)

The two approaches diverge in their predictions forT < Tc. RG calculations [3, 9–11]
predict a new term with ln2 |r| which will dominate at large distances. To first order the
RG calculations yield the following behaviour:

C(r) = A C0(r) + B τ 2(ln |r|)2 (2.7)

whereτ ≡ 1 − T/Tc, A is a non-universal constant, andB = 1/π2 + O(τ ) is a universal
constant. Some other universal properties were found in [12].
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The variational approach [7], the same scaling in ln|r| as for T > Tc is found for
T < Tc as well. The prefactorA, however, becomesT -independent and essentially remains
at its value atTc for the wholeT < Tc phase:

C(r) = Tc

πκ
ln |r| . (2.8)

A similar calculation yields [8]A(T ) which increases at even lower temperature. The self-
consistent Hartree approximation for the dynamics yields similar behaviour [13]. However,
there are also subtle differences between the Hartree dynamics and theGV results in the
regime of strong coupling where the transition is first order.

In a recent work theRG stability towards anexplicit replica-symmetry breaking (RSB)
was investigated [14]. It was found that forT < Tc a smallRSB term is relevant. However,
this symmetry breaking does not occur spontaneously.

In another recent work, a variational approach without recourse to the replica trick
was introduced [15]. All theGV results were reproduced under certain conditions but the
connection between the two methods is not yet well understood.

Numerically, there is only a single paper in which theRSGM was addressed directly [16].
From a numerical simulation of the Langevin equation of motion derived from the weak
coupling (λ � 1) RSGM no transition was found when the equilibrium properties were
explored. When an applied forceF was added a non-linear relation between the average
velocity v and theF was found [16]. This is in qualitative agreement with the dynamical
RG results [3].

The results presented below for the equilibrium behaviour will be clearly different from
these simulations. However, it should be kept in mind that the surface model actually
corresponds to the strong-coupling regime(λ ∼ 1) of the RSGM (and, moreover, includes
all harmonics with strength of orderλ).

3. Numerical results and discussion

The simulations were performed on theCM computers of the Thinking Machines Corporation
using theMC Metropolis algorithm. The moves, in which all thehi of one sublattice are
updated by increasing or decreasing them (independently) by one unit, are accepted or
rejected following the Metropolis heat-bath algorithm.

We simulated, for every realization of the disorder, two copies (or replicas) of the
system. They start each from different random initial conditions and each has its own time
evolution but both surfaces have the same disordered substrate. This approach (introduced
by Young in the spin-glass simulations [17, 18]) yields important information extracted
from the overlaps of the two copies. In addition it allows an improved monitoring of when
equilibration is achieved.

Measurement of the static quantities were taken only when equilibration was established.
Data (‘measurements’) were taken over time intervals of the order of one or several
equilibration time. The number of disorder realizations over which data was averaged varied
between 100 and several thousands depending on the system size and the temperature. More
details will be given below where specific calculations of different properties are addressed.

3.1. Height–height correlation function

Shugardet al [19] have performed theMC calculations of the discrete Gaussian model for
a surface with a flat substrate. They confirmed the existence of the roughening transition
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from a high-temperature rough phase (with a logarithmic behaviour ofC(r)) and a flat
low-temperature phase. To begin with we also simulated the pure model reproducing their
results. Once the disorder was introduced the behaviour ofC(r) changed drastically in the
low-temperature phase.

In figure 2 we show the general behaviour of the correlation function (2.5) for a pure and
a disordered system. The simulations were performed for lattice sizes ofL = 64 and 128.
The values of|r| were taken to be up toL/2. The finite-size effects are reflected in the
bending ofC(r) for large |r|.

Figure 2. Semilog plot ofC(r) for different temperatures when: (a) disorder is excluded, (c)
disorder is present and (b) overlap between these two cases. The straight line in (a) has slope
2/π2, while in (c) the slope is 1/π2.

Figure 2(a) shows the data obtained from simulations of the pure system at different
temperatures. The full line isC0(r) (shifted by a constant independent ofr) at temperature
TR ≈ 1.45 where the phase transition between the rough and smooth phases is expected to
occur [19]. At the roughening temperature the slope assumes the universal value 2/π2. It
can be clearly seen how the slope ofC0(r) approaches this value as temperature decreases
toward TR. Below TR the correlation function has some finite value independent of|r|.
The data for the disordered system are shown in figure 2(c). Now the full line has slope
1/π2 and was drawn at approximately the position where the phase transition is expected.
The slope 1/π2 is the prediction of (2.7) and (2.8) atT = Tc. For clearer comparison,
in figure 2(b) the previous two figures, the pure and disordered case, are superimposed on
each other. For higher temperatures, the effect of the disorder is negligible. Lowering the
temperature towardsTR, the difference becomes more apparent. (In the pure case, around
TR the slope behaves as 2/π2 + c(T −TR)1/2, wherec is a non-universal constant.) Finally,
belowTc the difference between the low-T behaviour of the pure and the disordered systems
is obvious. Figure 3 shows a closer look at the behaviour ofC(r), for the disordered system,
around the anticipated critical temperatureTc = κ/π = 0.6366 for our choice ofκ = 2. In
this case, the sample averaging was performed over 100 realizations. For each temperature,
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Figure 3. Semilog plot ofC(r) for L = 64.
The straight lines are the best fits toC(r) =
a(T ) + b(T ) ln |r|. The broken curve is the
RG prediction equation (2.7) atT = 0.5 with
A = 1.

measurements were repeated, with a new set of 100 realizations of the disorder, five to ten
times. The average values of these measurements with corresponding error bars are shown
in figure 3.

We compare our results with both the renormalization-group predictions, equation (2.7),
and with the results derived by the variational analysis with the one-step symmetry breaking
scheme, equation (2.8). In both cases the theoretical results refer to the large-|r| behaviour
of C(r) while numerical results are always limited by the lattice sizeL and by finite-size
effects.

According to theRG, equation (2.7), forT nearTc and for large|r| the effect of the
second term,Bτ 2 ln2 |r|, should dominate. To compare with (2.7) we need to be close toTc

but not too close (since the coefficient is proportional toτ 2 and the distance|r| at which this
term will dominate will be beyond the size of the system). We therefore chooseT = 0.5
for the comparison. The broken curve shows (2.7) for that temperature andA = 1. It can
be seen that the upper bending trend of the broken curve is for largerr less inconsistent
with the MC data. The downwards bending of theMC points for each temperature (which
was also observed in the data taken for the pure system) are due to the finite-size effects.

The replica variational approach predicts (see equation (2.8))C(r) to remain logarithmic
for all T with a T -independent coefficient forT 6 Tc. The data shown in figure 3 are
consistent with this behaviour. In our fit we used the values of theC(r) for |r| between 4
and 14 lattice spacings. We neglected the higher values ofC(r) because of the presence
of the finite-size effects as well as of strong sample to sample fluctuations. The full lines
in figure 3 are the best-fit curves. In figure 4 we show the temperature dependence of the
slopes for nine values ofT between 0.45 and 0.9 including those in figure 3. The vertical
dotted lineT = κ/π is the analytic result forTc. While in the high-T phase the slope of
C(r) changes linearly withT , for the low-T phase it saturates around the value 1/π2 as is
predicted by (2.8).
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Figure 4. Plot of the coefficientb(T ) from
the fitting equationC(r) = a(T ) + b(T ) ln |r|.
The vertical broken line is the analyticTc.
The horizontal line is the slope predicted by
equation (2.8) for allT 6 Tc.

Figure 5. Plot of the suitable normalized probability distributionP(|q̃|) for overlaps between
the same replica at different time (circles) and different replicas at the same time (diamonds).

3.2. Autocorrelation function

To gain more insight into the transition and the properties of the low-temperature phase, a
glassy order-parameter, its correlations, and/or probability distribution, should be invoked.
The natural quantity to start with for theRSGM:

Qαβ(r, t) = exp
{
2π i

[
hα(r0 + r, t0 + t) − hβ(r0, t0)

]}
(3.1)

cannot be used in the simulations of the discrete version of the model because

hα(r0 + r, t0 + t) − hβ(r0, t0) = d(r0 + r) − d(r0) + integer (3.2)

andQαβ is therefore constant.
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Instead we tried to look at the local autocorrelation function:

q
αβ

i (t) = {[
hα

i (t0 + t) − hα(t0 + t)
][

h
β

i (t0 + εαβt) − hβ(t0 + εαβt)
]}

(3.3)

wheret0 is time allowed for equilibration and the overbar means average over lattice sites.
The replica indicesα andβ take values 1 or 2, andεαβ = 0 if α = β or 1 if α 6= β. This
local quantity is first averaged over all sites:

qαβ(t, t0) = 1

N

N∑
i=1

q
αβ

i (t) (3.4)

whereN = L × L is the total number of sites. This order-parameter definition includes
the equal time overlap between different replicas as well as the auto-overlap of the same
replica at different times.

The probability distributionsP(qαβ, t0) were calculated using

P(qαβ, t0) = 1

M

[
M∑

m=1

δ
(
qαβ − qαβ(tm)

)]
av

(3.5)

whereM is the number of measurements. Whent0 is longer than the longest relaxation
time both distributions, forα = β and α 6= β, tend to the equilibrium distribution,P(q),
defined by

P(q) =
[〈

δ

(
q − 1

N

N∑
i=1

[hα
i − hα ][hβ

i − hβ ]

)〉
T

]
av

. (3.6)

The distributionP(q) is Gaussian forT > Tc but is expected to deviate from it for
T < Tc. Clearly, at high temperatureq goes to zero. On the other hand, at very low
temperature the probability to change the surface heighthi is very small so that the crystal
surface basically follows the disordered substrate. Trying to evaluateqαβ andg we could
not reach enough accuracy to extract reliable results within the computer time available. A
similar problem has been observed in simulations of the3D Ising spin glass [18] and the3D

gauge glass [20]. One possible way out of this problem is to look for a quantity with similar
scaling but for which statistical errors are smaller. The problem we have to overcome is
that for T just belowTc the deviations from the Gaussian distribution occur first at very
small values ofq compared with itsRMS. To accentuate the contribution from these small
values we tried to evaluate the ‘renormalized’ quantityq̃αβ(t):

q̃αβ(t) =
∑N

i=1 q
αβ

i (t)∑N
i=1 |qαβ

i (t)|
. (3.7)

The distributionP(q̃) indeed exhibits a transition from a distribution with one maximum
at q̃ = 0 to a distribution with two maxima symmetric with respect toq̃ = 0 (which becomes
a local minimum). In figure 3 we show the suitable normalized distribution functions
P(q̃) for different lattice sizesL = 16, 32, 64 and for seven values ofT in the interval
T = 0.70–0.45. Since the equilibrium distributions are symmetric, we only showP(|q̃|).
The sample averages were performed using 512, 256 and 100 samples forL = 16, 32 and
64, respectively. Depending on the temperature and the size of the simulated system, the
MC runs were between 215 to 219 MC steps. The actual measurements were grouped into
several groups, usually 8 or 16. Each inset shows the probability distribution of|q̃| for
α = β (circles) andα 6= β (diamonds) for some randomly chosen group of measurements
averaged over samples. For the equilibrated system, the distribution of overlaps within the
same replica and between the different ones should overlap as is seen in figure 3. Some
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small deviation is noticeable for lowT . It is worth mentioning that before the equilibration
has been reached, theP(|q̃|) as a function of time moves from left to right forα = β

(because the two copies started from random uncorrelated states), and from right to left for
α 6= β (for short times, the two copy states are strongly correlated [21]).

It is particularly interesting to look at the dimensionless combination of the moments:

g(T , L) = 1

2

{
3 − [〈q̃4

αβ〉T ]av

[〈q̃2
αβ〉T ]2

av

}
(3.8)

calculated after thermal equilibrium has been reached. The finite-size scaling ansatz forg

is g̃(L/ξ), i.e. for large enough size,L/ξ is the only relevant parameter. TheRG approach
[11] predicts ξ ∼ exp(c/τ 2). On the other side, if the transition is second order the
expected finite-size scaling ofg is: g(T , L) ∼ g̃(L1/ν(T − Tc)) whereν is the correlation
length exponent,ξ ∼ |T − Tc|−ν . Therefore, atTc curves ofg for different system sizesL
intersect one another. For the second-order transition, aroundTc the curves have to splay
out.

Our data forg are shown in figure 6. Depending on the temperature and the size
of the simulated system, theMC runs for equilibration were between 215 to 219 MC steps.
For smaller system size the average over disorder is performed using over 1000 samples.
However, for large system size,L = 64, the equilibration time for temperatures belowTc

is long, and we worked with a hundred samples. As in the calculation ofC(r), for each
temperature the measurements were repeated several times. Again, the average values of
these measurements with corresponding error bars are shown in figure 6. Clearly, figure 6
strongly suggests the existence of a phase transition somewhere in the temperature range
0.63–0.66. A finite-size scaling plot ofg is shown in figure 7. The best fit is obtained with
Tc = 0.643± 0.006 andν = 1.23± 0.10. The value ofTc is in good agreement with the
analytic predictions discussed above.

Sinceg is dimensionless, its dynamical scaling form is given byg(t) = G(t/τ0), where
τ0 is the relaxation time. If the transition is indeed second order, one expects a finite size
scaling formτ0(L, T ) ∼ Lzτ̃0(L

1/ν(T − Tc)), wherez is the dynamical exponent [22]. At
Tc this becomesτ0(L, Tc) ∼ Lz, figures 8 and 9 showg(t) as a function of the timet in
MC steps and the scaled timet/Lz during its approach to the equilibrium value(≈ 0.18) at

Figure 6. Plot of g(T , L) against temperatureT
for different lattice sizes. The full lines are to
guide the eye.
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Figure 7. Finite-size plot of the data shown in
figure 6 against the scaled variable withTc = 0.64
andν = 1.23 (see the text).

Figure 8. Plot of theq(Tc, L) against time during
the approach to the equilibrated configurations for
different lattice sizes.

Figure 9. Plot of g(Tc, L) at Tc = 0.64 against the
scaled timet/Nz/2. The dynamical exponentz is
2.29.
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T = Tc. During this timeg(t) is a highly fluctuating quantity and the average of theg(t)

over sufficiently many realizations of the disorder must be performed to obtain reproducible
results. We used 16 384, 8192, 4096, 4096, 2048 realizations for system sizes of 16× 16,
16× 32, 32× 32, 32× 64, 64× 64, respectively. The best fit givesz = 2.29± 0.16 which
is in a reasonable agreement with the expected theoretical value [3, 23],z = 2.

4. Conclusions

To summarize, the main results of this work are as follows:
(i) We verified the existence of a transition atTc ∼ κ/π by inspecting the behaviour

of two independent quantities: the height–height correlations and the overlap distribution
P(q) (directly and through the cumulant ratiog(T , L)). The only other numerical work,
in which no transition was found in the behaviour ofC(r), was performed on theRSGM

in the weak-coupling regime [16]. It may be that for weak coupling the scale at which
the new behaviour takes over just belowTc is larger than the system sizeL that was
investigated [24]. However, there is also an unlikely possibility that weak and strong
coupling (to which our model belongs) are in distinct universality classes. It is also hard to
see how such a scenario can be reconciled with the dynamic phase transition found in the
same weak-coupling simulations.

(ii) We have found that the coefficient of ln|r| dependence (which is proportional to
T for T > Tc) saturates to a nearly constant value forT < Tc. The behaviour of this
coefficient is consistent with the calculations of theGV approach [7] which predicts it to
be constant belowTc (note that anotherGV calculation [8] and a self-consistent dynamical
approach [13] predict that it will increase if the temperature is lowered well belowTc).

(iii) The histogram ofP(q̃) shows that it changes from having a single maximum at
q̃ = 0 (T > Tc), to having two maxima at̃q = ±q∗ for T < Tc. The form ofP(q̃) does
not show the form typical for one-stepRSB (namely the existence oftwo maxima on either
side of positive or negativẽq). On the other hand, the maximum is so broad that we cannot
rule out the existence of two maxima. Simulations of larger size samples will make the
features ofP(q̃) sharper such that the two possibilities might be distinguishable.

(iv) From the cumulant ratiog(T , L) we could provide the first estimate for the
correlation length exponentν ≈ 1.23. Note that a power-law behaviour of the correlation
length is in disagreement with variational calculations and theRG. In both theories the
correlation length diverges exponentially:ξ ∼ exp(c/ε2) from RG calculations and
ξ ∼ exp(c′/ε) from GV and a dynamic Hartree approximation. Clearly more analytic
work on the issue of whether the transition is second or infinite order will be worthwhile.

(v) The slowing down of the transition yields a rough estimate for the dynamic exponent
z ≈ 2.29± 0.16.

After this work was completed two new numerical works were reported in recent
preprints. In [24] theRSGM was simulated directly on a lattice for different strength of
coupling λ. Its results confirm the ones presented above for strongλ. For weakerλ it
demonstrates that one needs larger|r| to observe the saturation of the coefficientA to
a temperature independent value. The temperature-dependent termC0(r) dominates on a
shorter scale whenλ is small. That partly explains the lack of transition observed in [16].

In another paper [25], simulations of the random-substrate surface similar to the one
reported above, were carried by another group. The simulated systems were larger by a
factor of two. Their results agree with those presented here but they were given a different
interpretation. They used the exactC0

L(r) for a finite lattice of sizeL and found the best
fit when a term [C0

L(r)]2 was included belowTc. The coefficient of this term is about one
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fifth of the RG prediction. We have analysed our data following this interpretation and the
results are consistent (within the error bars) with the ones found in [25]. It should also be
noticed that such behaviour may be explained within theGV approach due to the crossover
(mentioned above) fromC0

L at small |r| to the temperature-independent behaviour, which
has a higher slope, at large|r|. These last two works have made important contributions
to the debate but at the same time they demonstrate that it is still far from reaching its
conclusion.
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